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MONTE CARLO APPROACIES TO LIGHT NUCLEI:
Structure and Electron Scattering

J. Carlson

T-5, MS B233, Los Alamos National Laboratory, Los Alainos, NM 875453

Significant progress has been made recently in the application of Monte Carlo
methods to the study of light nuclei. We review new Green's function Monte
Catlo results for the alpha particle, Variational Monte Carlo studies of '*Q, and
methods tor low-energy scattering and transitions. Through these calculations,
a coherent picture of the structure and electromagnetic properties of light nuclei
has arisen. In particular, we examine the effect of the three-nucleon interaction
and the importance of exchange currents in a variety of experimentally measured
properties, including form factors and capture cross sections.

1. INTRODUCTION

Few- and manyv-body problems in nuclear systems have a long history, but only in recent
times have the computational techniques and facilities been adequate to fully attack these
problems. The difficulties are primarily due to the strong correlations arising from the nuclear
force, rorrelations which require relatively sophisticated algorithms. One important success
story is the development of Faddeev methods for A=3. Another, which we will review in
this article, is the application of Monte Carlo methods to light nuclei.

We attempt, in these calculations, to solve the non-relativistic Schroedinger equation:

) h? N
W) = L—mV,’+EM,+ Y Vi +..| ¥ = EW) (1)
1 1<y i<k

for a HHamiltonian determined by fitting two- (and possibly three-) body experimental data.
(Mearly such a non-relativistic treatment is only a first approximation; nevertheless a great
deal of physies can be examined in this way.

We will review recent developments in Monte Carlo techniques as applied to nucele, in
cluding Variational' (VMC) and Green's Function Monte Carlo?? (GFMC) methods, which
have proven to Le very valuable in studying light nuclei. These methods have for the maont
part originally been developed in condensed matter physics, where they have been used 1o
study quantum fluids and solids.** The Hamiltonian in these systems iy at least superti
cially similar to that in nuclear physics, it consists of a strong short-range repulsion and an
attractive foree at larger distances.

The Hamiltonian it nuclear physies, though, is complicated by the strong spin-isospin

dependence of the interaction. We will conecentrate chielly on the Nrgonne® NN interaction,



which may be written:

"',U = Z‘/'k(rU)OlkJ \_!)
-a = 4a I<J
where the operators U le
O:‘)= 1‘0‘.aJ‘SiJ’L'S')‘L.S?J'[‘Ej (5

multiplied by either an isospin-independent (1) or -dependent (7, - r,) operator. All mudern
interactions ( Argonne,® Bonn,” Nijmegen® ...) may be written in a similar manner, although
the choice of non-local operators varies. These interactions consist of a one-pion interaction
at long distances, an intermediate range attraction, and a short-range phenomenological
repulsion, and are fit to the deuteron as well as two-body scattering data.

In a similar spirit, the three-nucleon-interaction (TNI) at long distances is assumed to
have the structure of a two-pion-exchange interaction, but its precise strength is adjusted to
fit the three-body binding energy.? The full TNI consists of the two-pion exchange picce V',
and a short-range repulsive term:

V;jk = UO Z H"lw(ri))‘VZR(rlk) + A0 Z V’ln('-:i)s Flk)a (l)

cye cyc

where the sums run over cyclic permutations of the particles, and the function W,, has the
range of a two-pion interaction. The parameters [/, and Ap can be estimated from calculating
the effects of suppressing A degrees of freedom, but their precise values are determined by
fitting the binding energy of A=3 nuclei. The three-body force is quite small compared
to the two-nucleon interaction, but nevertheless provides an important fraction of the total
binding energy.

The Monte Carlo methods (Variational and G: :'s Function Moate Carlo) used to solve
the Schroedinger cquation are presented in the next section. We then review a variety of
recent results concerning the structure and electromagnetic propertics of light nuclei, In
particular, we examine the question of three-nucleon-interactions, the importance of the
tensor interaction, and electromagnetic forin factors and transitions. Exchange currents will

be seen to have a decisive role in many electromagnetic properties.

2, Monte (Carlo Methods

Variational Monte Carlo (VMC') is a variational method often empioyed to study the
ground state and Jow-lying excitations of quantumn systems. A generalized Jastrow form 1,

assumed for the wave function:

|‘l’) :sn,"l)l'b)| 1)

1<)
and the expectation value of the Hamiltonian is minimized with respect to variational pa

rameters in the wave function. In this equation, ¢ is an anti-symuietrie Slater determinant



of one-particle states, and the Fj, are pair correlation operators:
Fy = f<(ri;) [1 + u3 (2 u"(r,-,)OfJ-)] (6
k

which include the most important spin-isospin operators in the Hamiltonian. The operators
for different pairs do not commute, so we introduce the symmetrization operator S to obtain
an overall anti-symmetric wave function. The pair correlations are obtained by solving two-
body differential equations of the general form:

hz
[—;-V2 +v(r) + A(r)]F =0, (7)

where the function A contains several variational parameters. The uj correlation in equation
6 is a three-body term which reduces the strength of the operator-dependent two-body corre-
lations for some configurations of the nucleons.! The complete wave function ¥ is constructed
to have the correct asymptotic properties as onc nucleon is separated from the system.

The straightforward variational Monte Carlo algori.hm is limited to treating small sys-
tems, optimistically up to A = 8. For the spin-independent interactions in condensed matter
physics, it is possible to simulate one to two hundred particles. For the interactions of i.ter-
est in nuclear physics, however, the problems are : wuch more complex. The wave function of
a nucleus consists of 2“‘;,4!';; spin-isospin components, the first factor represents the spin (up
or down for each nucleon) and the second the isospin. These states are explicitly summed
in light nuclei.

In order to treat larger systems, however, another method must be developed to perform
this sum. In principle, this could be done with Monte Carlo, but schemes employed to date
vield fairly high variance. Pieper, et al.!° have recently introduced a cluster approximation
scherme in an attempt to overcome this problem. In this method, the expectation value of
an operator O is written as a sum over N-body clusters, where N ranges from | to A. In an
N-body cluster, only the spin-dependent correlation operators which act within the clusters
are taken into account. For example, it we write the correlation operator F,, (Eq. 6) as

S50 + U}, the wo body cluster approximation to the potential energy V,, is:

v = QU Tea S+ UtV + Ul T Ji)®)
L} A . '
(@I Muce fi)[1 + U T[4+ U (Tt Sir)®)
The full spin-independent jastrow wave function is taken into account at each step. Three

bady clusters involve expressions of the form ([1 + U, )i + U ](1 +l/,,,|)tV.,[l + UV [+

[7,], and so on, With current techniques, it is possible to analyze up to four-body clusters,

(%)

The calculation is ouly strictly variational if up to A-body clusters are taken into account,
but results to date show very good convergence for most expectation values, indicating that
keeping a smaller subset is a good approximation. Current methods work well for oxypen,

but are still limited by an increasing statistical error for larger systems.



This specific form (Eq. 5) of variational wave function is adequate for many purposes,
yielding ground state energies within a few per cent of the Faddeev values for A=3. It al~o
gives very similar results for the electromagnetic form factors.!' Further improvements are
possible by including L-S correlations and three-body terms.!? It is necessary, though. tu
develop exact methods to provide adequate tests of these wave functions for A > 4.

GFMC methods project out the ground state of a quantum system through:
[Wo) = lim exp (-Hr)|¥r), (9)

where |Wr) is an initial trial state typically obtained from a variational calculation. In
general one cannot compute exp (—H), but by dividing the propagation time 7 into many
small steps Ar,

n

exp(—Hr) = [Texp(—HAT) = /G(ﬁ,.,R’,._,)....G(ﬁ., 4a) (10)
1

the full propagator can be evaluated by Monte Carlo. In practice, one must use several time
steps Ar and extrapolate to At = 0 in order to eliminate time step errors associated with
the non-commuting nature of the kinetic and potential terms. The fact that the potential
acting between different pairs does not coramute is an important aspect of nuclear physics
problems which makes it difficult to use more accurate analytic methods to approximate the
pair Green’s function.

For short propagation times Ar and static potentials, the following approximation'! to
the propagator is quite useful:

G(R,Il')zGo(R,R')H‘Lu_—’). (11)
O(F. .

1<) gij(rm r'y)

In this equation, the full G for 3A coordinates is approximately given by the free particle
propagator (a gaussian) times a product of all pair propagators divided. by their respective
free particle propagators. The simplest approximation to the ratio in equation 11 is,

9i/ 95 = (exp[~(Ar/2)(V,y(r) + V,(r"))], (12)

where V, and consequently g;,, are operators in spin-isospin space. In fact, we perform a
further sum over ‘sub-paths’ of the two particles in order to determine the two-body Gieen's
function.** We use time steps on the order of 3 = 5 x 107" MeV-!, which yield very snall
extrapolations to zero time step.

incorporating momentum-dependent teriis in the GFMC is more difficult.  Realistic
models of the NN interaction do contain such pieces, including L - S, L S* LY and p}
operators. To date, we have only been able to include the first of these operators, [ - S,
snceessfully in the exact GFMC algorithm,  The ditliculties in treating the second-order
derivatives term are discussed in reference 13, and are essentially due to the fact that the

nucleons gain different effe-tive masses in the differsnt spin-isospin channels.



However, the Argonne interaction has been constructed to some degree with the idea
that these terms should be small. In fact, the expectation value of the sum of these terms in
light nuclei is only one to two MeV. Consequently, we solve exactly for a2 modified Argonne
V8 (containing only the eight operators through L - §) interaction which best approximates
the full Argonne V14 model. This model reproduces the deuteron, the singlet S, and triplet
P waves (with the exception of coupling to F waves) exactly. Perturbation theory is then
used to estimate the difference between the V14 and V8 models, we find that this difference
is small in the alpha particle. Finally, we note that this Argonne V8 model is somewhat

different than that used in previous calculations.'

3. RESULTS

We will first concentrate on a new set of GFMC results obtained for the alpha particle
with the AVS nucleon-nucleon plus Urbana model 8 three-nucleon-interaction.'* In order to
demonstrate the convergence of the GFMC method, figure | shows the ground state energy
plotted as a function of the total iteration time 7. At 7 = 0, the energy is equal to the
variational result, and it quickly drops to the exact ground state energy. In fact, the plot
covers only the initial part of the calculation, up to a total iteration time of 0.012 MeV~!. The
actual calculation includes 5 timnes as many iterations, the horizontal lines in the figure arc
statistical error bounds obtained by averaging the results between 0.024 and 0.060 MeV "'
The convergence of the GFMC solution is determined by the accuracy of the trial wave

function as well as the excitation structure of the nucleus.
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Figure 1) Alpha Particle Ground State Energy vs. iteration time 7.



The variational wave function used in this calculation was taken from reference 16, an
was optimized for the Argonne V14 plus Urbana model 7 TNI. Consequently, it does uot
provide a very good estimate for the ground state energy with the model 8 TNI, which has
a stronger repulsive component and a weaker two-pion-exchange term. However, the rins
radius of this trial wave function is very near the exact result, hence it requires smaller
extrapolations for the estimates of other properties. GFMC produces a wave function only
in a statistical sense, and hence ground state energy expectation values other than the energy

are extrapolated from ‘mixed' and variational estimates via:
(WoiH|Wo) ~ (Vr|H|Wo) — (¥r|O|¥7). (13)

The extrapolations required with the present variational wave function are gererally quite
small.

For the Argonne V8 plus TNI model 8 interaction, we obtain a ground state energy of
--29.20 £ 0.15 MeV, approximately one MeV overbound compared to the experimental —28.3
MeV. The perturbative estimate of the difference between the Argonne V14 NN interaction
and the V8 model is 0.9 MeV; yielding a total energy of -28.3 £ 0.2 MeV, in remarkably
good agreement with the experimental result.

One should be somewhat cautious because of our use of perturbation theory in the dif-
ference between V14 and V&; but it appears that the same three body force can be used
to produce very accurate binding energies for three and four body nuclei. The Urbana TNI
model 8 has been chosen to provide a good fit to the triton binding energy,!” Faddeev re-
sults give -8.46 compared to the experimental -8.48 MeV. The expectation value of the three
nucleon interaction is a small fraction (< 5%) of the total potential energy, so at this level
there is no apparent reason to introduce four- or higher-body interaction terms. Other mod-
els (Reid, Nijmegen, ...) of the NN potential give a similar underbinding for the three- and
four-body nuclei, hence it should be possible to fit the binding energies of these nuclei as
well with an appropriate TNI model.

The most accurate variational calculations to date'? give a binding energy approximately
one MeV higher than this GFMC calculation. As always, the total binding energy includes
a iarge canceliation between kinetic and potential terms, each of which are of the order
of 100 MeV (Table 1). Therefore, although the TNI is a relatively small fraction of the
two-nucleon interaction it is a significant part of the total binding energy, and accurate
cal-ulations are important when determining its effects. Also included in Table 1 are several
othe. expectation values which, although not directly accessible experimentally, provide a
useful guide to understanding these nuclei.

Of particular interest is the strong effect of the tensor interaction in the alpha particle,
With the Argonne NN interaction, the tensor conponents contribute approximately 2/3 of
the two-body potential energy in the alpha particle. Almost exactly the same fraction is

found in Faddev . 1lculations of three-body nuclei and in cluster Monte Carlo calculations of



IBO.IS

Another measure of the strength of the tensor interaction is the D state probability in
the four-nucleon ground state. With the Argonne plus Urbana model 8 TNI interaction, the
D-state probability is 16%, other models range from 12 to 17 %. These probabilities are
nearly consistent with what one would expect based upon the number of triplet pairs in the
A=2, 3, and 4 body nuclei; a ratio of 1:1.5:3. In addition, the asymptotic D to S state ratio
of the alpha particle wave function is in good agreement with experimental results.'® The
remainder of the wave function is dominated by the fully symmetric S-wave state, which has
a probability of 82.8(0.2)%. In addition, there are small components of other symmetries,

either S- or P-wave.

Table 1: Alpha Particle Expectation Values

i

T Energy 283 (0.2)
(T) 109.3  (1.2)
(Vcoul) 0.75 (001)
(Va-,) 50 (0.2)
(Vi) | -108  (0.2)
P12 [ 145 (0.01)
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Figure 2) VMC and GFMC results for the proton density in the alpha particle.

We have also computed the proton density for both the variational and GFM(' wave

functions (Fig. 2). The most impoitant difference is within 0.5 fm of the center-of-mass,



the GFMC wave function has a slight dip which does not appear in the variational results.
This difference appears in only a very small fraction of the total volume of the nucleus dne
to th~ r? phase space factor at the origin. Consequently, the difference does not significantly
affect the rms radius or the charge form factor at small momentum transfer. In the impulse
approximation, the charge form factor can be obtained as the fourier transform of the one-
body charge distribution.

In reality, though, the effects of two-body charge and current operators can be important
even at relatively low momentum transfer. In order to obtain meaningful comparisons with
experimental results, the effects of these two-nucleon operators must be incorporated into
the calculaticns. Riska?® has developed a method for constructing models of the exchange
currents which satisfy the continuity equation:

V- Jer +i[Vijr0) = 0. (14)

This constraint is used to specify the ‘model-independent’ exchange currents. In addition,
there are transverse pieces in the current ( e.g. NA~v,pry, and wry) which arc not so
constrained. The most important two-body terms in the current are due to the pion:

jx(q) = -}i(‘fi X 7;):[0x(k;)0i(0; - k;) — x(ki)G5(0i - k.)-

”:2 = ’;é(a,- - ks - k;)De(k;) = e (k)G S(q), (15)

where k; is the momentum tran: ‘ered to nucleon i and v, is the fourier transform of the
terms in the interaction associated with the quantum numbers of exchanged pions. In the
limit of point pions and nucleons,

12 1

P = ST

(16)

In fact, this method produces nearly point-like pion propagators with the Argonne interac-
tion.

Using this method, Schiavilla and Riska have computed the magnetic form factors of
3He and 3H (Fig. 3), as well as the backward cross-section for the electrodisintegration of
the deuteron. The different curves show both the impulse and impulse plus mesor: exchange
current results, the contributions of the exchange currents are crucial to reproducing the
experimental results, particularly the contribution of the isovector exchange current opera.-
tors. Results with both the variational and Faddeev wave functions are also shown; there are
some differences in the region of the diffraction minimum and beyond. Schiavilla and Riska
have also calculated the backward electrodisintegration of the deuteron near threshold. This
reaction is alsc very sensitive to the isovector exchange currents, and is well reproduced in

the calculations, up to very high values of the momentum transfer.



10°

10"

(Fu(@)|

Figure 3a) Magnetic form factor of 3H, from Schiavilla and Riska.!! Impulse approxi-
mation (IA) results are shown along with the complete results (IA+MEC). Curves labeled
FAD employ the exact Faddeev wave function, and variational results are labeled VAR.

y \ ’He 3

10°!

W

10° M
[}
F '
100 e L N N P
0 ? 4 ¢ 8 10
Q(tm™')

Figure 3b) Magnetic form factor of *He, as above.

They have also computed the charge form factors of the three-body nuclei,” and obtain
good agreement with experimental results. The charge operators are more speculative since
they involve relativistic corrections and are not constrained by the continuity =quation.



However. in the alpha particle some of the uncertainties are decreased because of the isoscalar

nature of the system. We have combined the following one-body charge operator:

2
pla) = [1 - 3315168 (a) + GH(a)rd
S Z 2P 21630 - 263 (0] + 16K - 264 (@)l

incorporating the Darwin-Foldy term and a small L - S correction, with a two-body charge

(17)

operator due to pions:

pr(q) = .’2'::;{ [FS(a)mi -7 + Fl"(q)fjl] (0i - qo; - k;)oa(k,)+

[FE(@)mi - 75 + FY ()7 (0 - o - ki) (ki)) (13)

to calculate the charge form factor of the alpha particle. This form of charge operator
was first considered by Kloet and Tjon in examining pion photoproduction.?? We have also
included the remaining terms « “Schiavilla and Riska, but their effect is an order of magnitude
smaller than the terms above up to a momentum transfer of 2 5.5 fm~!. The contribution
of the one-body and pion-exchange terms are shown in figure 4. As is apparent in the
figure, the VMC and GFMC results give nearly identical results for the exchange carrents.
However, there is a significant difference between the one-body terms in the region of the
second maximum. The form factor here is down by two orders of magnitude from that at
the origin due to a sensitive cancellation in the fourier transform. Hence it is not surprising
that the variational calculation differs significantly from the GFMC result in this region.
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Figure 4) VMC and GFMC results for one-body and pion contributions to the alpha

particle charge form factor.




The full calculations are compared to experiinental results in figure 5. The GFMC(
calculation is in excellent agreement with experimental results up to a momentum transfer
of ~# 4.5 fm~'. Beyond that point, the calculated form factor is significantly larger than
experimental results. Nevertheless, the overall agreement is excellent, particularly at lower

momentum transfers where one would expect the theory to work best.
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Figure 5) Alpha particle charge form factor, experimental and calculated.

A very important topic in nuclear physics is the experimental determination of the cor-
relations between nucleons in nuclei. The Coulomb sum, measured in electron scattering
experiments, is a valuable methcd for studying these correiations, and is defined as:

® Ry q,
wh [(‘E dw,

where R, is the longitudinal response of the nucleus and Gg is the proton form factor. The

(19)

integral extends from energies just above elastic scattering to infinity, which allows us to use

closure to calculate the Coulomb sum as a ground state expectation value.

A 2
(ZF.(¢)] .
=—|(0 G )
where |
pi(q) = exp(iq - ri)| +T"‘] (21)

2

if we ignore smail neutron contributions (which are included in the calculations) and two-
body terms. In this approximation, the Coulomb sum is siruply:

(¢*)]?

S=1- /—————
[(r[.(([ lz

+ //’m)(‘l) (23



where F. is the charge form factor of the nucleus and p,,(q) is the fourier transform of the
two-body distribution function integrated over the pair’s center-of-mass.

The calculations .u;.h,a‘ompared to experimental results in Figure 6. T'wo caveats should
be noted concerning this comparison. First, the experimental results only extend to a finite
energy, and consequently must be extrapolated to determine the full Coulomb sum. Schiavilla

et 31.23'24

calculated the energy- and energy-squared weighted sum rules with a variational
wave function; assumed a functioral form for the response in the tail region, and fit this
curve to the calculated moments. The contributions of the tail region in the experiment are
given by the difference between the points labeled ‘extr’ and ‘trunc’. The latter includes oniy
the response up to the experimental limit. As shown in the figure, the VMC and GEFMC

curves are nearly identical, and both agree very well with the extrapolated results.

Coulomb Sum
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Figure 6) Coulomb sum in the alpha particle.

Beck?® extracted ppy(q) from the experimental results in the three-nucleon syste n using
a slightly different extrapolation technique and the theoretical results for the neutron con-
tributions. Although the qualitative features of the experimental and theoretical curves are
similar, the experimental pp,(q) is much higher beyond the first minimum. This would indi-
cate even a stronger correlation in the protons than is present theoretically, but contributions
of two-body operators to the ('oulomb sum should be included before strong conclusions are
drawn,

Once a consistent picture of the ground state properties of light nuelei has heen obtained,
there are two natural directions for future research, The first is calculations of the stractue:

and properties of hieavier nuclei, and the second is the study of dynawmic properties, Heavie



nuclei are diffcult to study because of the strong spin-isospin dependence in the interaction.
Cluster Monte Carlo methods hold the most promise for calculations of many-body nuclei.
In 0, Pieper et. al'® found a ground state energy of -7.0 MeV per nucleon with the
Argonne V14 plus TNI model 7 interaction, compared to the experimental binding energy of
8 MeV per nucleon. This form of variational wave function gives roughly the same binding
per nucleon in the alpha particle.

Currently, this work is being extended to include more accurate forms for the wave
function, including L - S and improved three-body correlations. Preliminary results indicate
a significant increase in the binding energy, but some work remains to be done. Among the
issues remaining to be resolved are a better understanding of the convergence of the cluster
method for three-body and rmomentum-dependent two-body interactions. The Coulomb sum
for 130 has also been calculated, and is shown in Figure 7. Thers is no experimental data
available for '%0, so the data for '?C is included in the figure. Also shown is a mean-field
calculation in which it is assumed that there are no correlations between the nucleons. The
data at small 4 demonstrate the presence of correlations, but there are large uncertainties
at higher momentum transfer. It is interesting to note that the Coulomb sum cannot be
smoothly extrapolated from light nuclei to nuclear matter.
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Figure 7) Coulomb sum in 'O, from reference 10.

The other outstanding problem in the application of Monte Carlo methods to nuclear
physics is the study of dynamic properties, a very ambitious goal. The primary successes
to date have been in the study of low-energy scattering and electromagnetic transitions,

and progress has been made in approximate treatments of dynamic response in electron



scattering.“?7 [ will concentrate on the former topic, and particularly upon the n + *lle —

a + ~ reaction.

Low energy scattering in a regime where only two-body breakup is energetically allowed
can be treated with variational methods.?® The basic idea is very similar to R-matrix ap-
proaches. In a one-channel problem thc Lcundary condition is specified at a point beyond
the interaction region, and then a variaticnal search is performed to determine the en-
ergy eigenvalue appropriate to that boundary condition. This scheme can be generalized to
multi-channel scattering processes, but requires a determination of the energies and relative
amplitudes at the channel surfaces. The method’s practicality depends upon the ability to
diagonalize in a small basis (10 - 20 states) using Monte Carlo methods. Preliminary results
on small problems indicate that this should be feasible, but multi-channel methods have not
been tested on a realistic problem.

We have used this method to study the n + *He — a -y reaction, which is dominated
by one channel.?® This reaction is of interest because of its possible relationship to the weak
capture reaction in the four-nucleon systemn, a reaction which produces the highest end-point
energy neutrinos from the sun. There have been speculations that these neutrinos could be
measured separately in a future solar neutrino ohservatory. In the impulse approximation,
the weak and electromagnetic capture are closely related.

Our calculations indicate, though, that this reaction is dominated by exchange currents.
We obtain a strong-interaction scattering length of 3.5 £ 0.25 fm for the spin one n- *He
state, which agrees well with experimental estimates. Using this scattering wave function
and a variational ‘He wave function, we find that only 10 % of the experimental value
(60 ubarns) is obtained in the impulse approximation. The low value is to some exteut
understandable since the impulse cross section is precisely zero in the limit where there is
no tensor force, and consequently a purely s-wave alpha particle.

Using the full exchange current models, we find a value of 110 ubarns for the cross section.
Including only the better-constrained ‘model-independent’ terms in the exchange currents
gives 70 ubarns, in much better agreement with the experiment. A similar result 15 obtained
if we keep only the 7 exchange terms, as has been done in the three-body calculations of
Friar, Gibson, and Payne; and use a cut-off of 5.8 # masses in the propagator. In this case
we obtain a total cross section whicl agrees with the experimental value. Our results are
quite sensitive to the scattering length, however, a decrease of 0.25 fm in the scattering
length would increase the calculated cross sections considerably. Much work remains to be
done in this area, as many important tests of strong-interactions and exchange currents are

available.



4. Summary and Outlook

Monte Carlo methods provide a valuable tocl for understanding the nuclear Hamilto-
nian and nuclear structure. They are also applicable to other areas of nuclear physics,
for example quark-model physics. In this talk, I have emphasized applications to tradi-
tional models of nuclear physics and the successes of these models in describing properties of
light nuclei. Realistic nucleon-nucleon interactions, combined with plausible three-nucleon-
interaction models, give a good description of the binding energy of three- and four-body
nuclei. Calculations employing these interactions demonstrate the very important role of
the tensor force. When coupled with exchange currents, these ‘traditional’ models can also
provide reasonable descriptions of the form factors of few-body nuclei.

Light nuclei are simple enough so that many calculations are practical, but complex
enough to allow many interesting processes to be examined. Calculations of the Coulomb
sum indicate the importance of nucleon-nucleon correlations, and low-energy reactions offer
the opportunity for a wide variety of tests for the nuclear Hamiltonian and exchange current
models. Many important challenges lie ahead in the 90’s. Foremost among these are calcu-
lations of larger nuclei and development of new techniques for treating dynamics. Heavier
nuclei offer the opportunity for studying the nuclear interaction in negative parity states and
very neutron-rich nuclei, which are important astrophysically through their connection with
neutron stars. A better understanding of current and future electron scattering experiments
requires reliable calculations of the dynamic response of nuclei, perhaps the most challenging
goal for the next decade.

The author would like to thank R. B. Wiringa, R. Schiavilla, G. L. Payne, and J. L. I'riar
for valuable discussions concerning their recent results. Thia work was supported by the U.

S. Department of Energy.
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